UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/02 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	02

M marks are given for a correct method.

A marks are given for an accurate answer following a correct method.

B marks are given for a correct statement or step.

D marks are given for a clear and appropriately accurate drawing.

P marks are given for accurate plotting of points.

E marks are given for correctly explaining or establishing a given result.

Abbreviations

cao correct answer only
cso correct solution only
ft follow through
oe or equivalent
soi seen or implied
ww without working
www without wrong working

1	(a)	$4 \times 3.8 \times 10^5$ 1.52(0) × 10 ⁶	M1 A1	If zero scored SC1 for 1.5×10^6 ww.
				www 2 [2]
2	(a)	2	B1	[-]
	(b)	120	B1	Accept $\frac{2\pi}{3}$
				[2]
3		x = 45	B1	Answers on the diagram can be
		y = 40 $z = 70$	B1 B1	accepted on the diagram unless contradicted in the answer spaces.
		2 – 70	DI	[3]
4	(a)	$\frac{1}{3}(p+q)$ oe	B1	
	(b)	\sqrt{xy} or any unambiguous equivalent	B1	Accept \pm , $-$, $+$ Not \sqrt{xy}
_	()		D1	[2]
5	(a)	-3, -2, -1, 0, 1	B 1	
	(b)	29, 31	B1	
	(c)	-4, 4	B 1	
				[3]
6	(a)	log 9	B 1	Accept 2 log 3
	(b)	$4\sqrt{2}$ or $2\sqrt{8}$ or $\sqrt{32}$	B2	B1 for two of $7\sqrt{2}$ or $5\sqrt{2}$ or $2\sqrt{2}$ seen
7	(a)	35, 48	B1	[3]
	(b)	n^2-1 oe	B2	B1 for n^2 , or $n^2 + c$ seen, or $n = n^2 - 1$ or M1 for difference method seen as far as third line (all 2's)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	02

8	(a)	Correct translation. Top of flag at (2,1)	D2	D1 any other translation. Ignore labels	
	(b)	Correct reflection. Top of flag at (3,3)	D2	D1 Reflection $y = 1$, or reflecting their P in $x = 1$	
9		Attempt to get 2 equations for elimination Correct addition/subtractions of their equations	M1 M1	Condone 1 slip Condone 1 further slip (dep on first M1)	
		$ \begin{aligned} x &= -1 \\ y &= 3 \end{aligned} $	A1 A1		
		OR	OR		
		Equation $x = \text{or } y = \text{from one equation}$ Substitute their expression into other equation correctly	M1 M1	Condone 1 slip No further slips (dep on first M1)	
		x = -1 $y = 3$ www 4	A1 A1	[4]	
10		For correct multiplication by $t-2$ For a correct division by y For adding 2 or $2y$ correctly as appropriate Leading to	M1 M1 M1	Can be in any order	
		$t = \frac{a+2y}{y} \text{or} t = \frac{a}{y} + 2$ www 3		Final answer must be correct to score M3	
11	(a) (i)	$\begin{pmatrix} 6 \\ -3 \end{pmatrix}$ cao	B1	[3]	
	(ii)	$6^{2} + 3^{2}$ $= \sqrt{45} \text{ or } 3\sqrt{5}$ $Gradient = \frac{-3}{6} \text{ oe}$	M1 A1ft	Only if (a)(i) is in non zero integer form	
	(b)	Gradient = $\frac{-3}{6}$ oe	B2	If B0 then B1ft for Gradient = $\frac{change \ in \ their \ y}{change \ in \ their \ x}$ B1 for negative gradient (indep) If still B0 SC1 for $\frac{-3}{6}x$ oe	
	(c)	Midpoint = $(0, \frac{7}{2})$ oe cao	B1	6	
	(d)	Gradient of perpendicular = 2 or $\frac{-1}{their(b)}$	B1ft	Implied by $(y =) 2x \pm c$	
		$y = mx + \frac{7}{2}$ oe (indep)	B1	[8]	
12	(a)	64	B1	[0]	
	(b)	$\frac{3}{4}$ or 0.75	B2	If B0, then B1 for $(\frac{\sqrt{3}}{2})^2$ seen [3]	